Rabu, 24 Oktober 2012

MANGANESE ORE in NTB & NTT (Part - 01)



MANGANESE ORE in NTB & NTT


Manganese is a chemical element, designated by the symbol Mn. It has the atomic number 25. It is found as a free element in nature (often in combination with iron), and in many minerals. Manganese is a metal with important industrial metal alloy uses, particularly in stainless steels.
Historically, manganese is named for various black minerals (such as pyrolusite) from the same region of Magnesia in Greece which gave names to similar-sounding magnesium, Mg, and magnetite, an ore of the element iron, Fe. By the mid-18th century, Swedish chemist Carl Wilhelm Scheele had used pyrolusite to produce chlorine. Scheele and others were aware that pyrolusite (now known to be manganese dioxide) contained a new element, but they were not able to isolate it. Johan Gottlieb Gahn was the first to isolate an impure sample of manganese metal in 1774, by reducing the dioxide with carbon.
Manganese phosphating is used as a treatment for rust and corrosion prevention on steel. Depending on their oxidation state, manganese ions have various colors and are used industrially as pigments. The permanganates of alkali and alkaline earth metals are powerful oxidizers. Manganese dioxide is used as the cathode (electron acceptor) material in zinc-carbon and alkaline batteries.




Physical properties 
 
Electrolytically refined manganese chips and 1 cm3 cube.Manganese is a silvery-gray metal that resembles iron. It is hard and very brittle, difficult to fuse, but easy to oxidize.[1] Manganese metal and its common ions are paramagnetic.[2]








Isotopes

Naturally occurring manganese is composed of one stable isotope, 55Mn. Eighteen radioisotopes have been characterized, with the most stable being 53Mn with a half-life of 3.7 million years, 54Mn with a half-life of 312.3 days, and 52Mn with a half-life of 5.591 days. All of the remaining radioactive isotopes have half-lives that are less than three hours and the majority of these have half-lives that are less than one minute. This element also has three meta states.[3]
Manganese is part of the iron group of elements, which are thought to be synthesized in large stars shortly before the supernova explosion. 53Mn decays to 53Cr with a half-life of 3.7 million years. Because of its relatively short half-life, 53Mn occurs only in tiny amounts due to the action of cosmic rays on iron in rocks.[4] Manganese isotopic contents are typically combined with chromium isotopic contents and have found application in isotope geology and radiometric dating. Mn–Cr isotopic ratios reinforce the evidence from 26Al and 107Pd for the early history of the solar system. Variations in 53Cr/52Cr and Mn/Cr ratios from several meteorites indicate an initial 53Mn/55Mn ratio that suggests Mn–Cr isotopic composition must result from in situ decay of 53Mn in differentiated planetary bodies. Hence 53Mn provides additional evidence for nucleosynthetic processes immediately before coalescence of the solar system.[3]
The isotopes of manganese range in atomic weight from 46 u (46Mn) to 65 u (65Mn). The primary decay mode before the most abundant stable isotope, 55Mn, is electron capture and the primary mode after is beta decay.[3]







Chemical properties

The most common oxidation states of manganese are +2, +3, +4, +6 and +7, though oxidation states from −3 to +7 are observed. Mn2+ often competes with Mg2+ in biological systems. Manganese compounds where manganese is in oxidation state +7, which are restricted to the unstable oxide Mn2O7 and compounds of the intensely purple permanganate anion MnO4, are powerful oxidizing agents.[1] Compounds with oxidation states +5 (blue) and +6 (green) are strong oxidizing agents and are vulnerable to disproportionation.